

GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
 ✓ 	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

G	Questi	n Answer	Marks	AO element	Guidance
1	(a)	Polar bonds F (atom) is more electronegative (than C atom) OR F is very/the most electronegative ✓	2	AO1.1 ×2	Mark independently ALLOW C and F have different electronegativities OR the atoms have different electronegativities BUT DO NOT ALLOW C is more electronegative
		No overall dipole (CF₄ is) symmetrical OR tetrahedral OR dipoles cancel OR dipoles act in opposite directions ✓			 ALLOW C–F shown with correct dipole, i.e. C^{δ+}– F^{δ−}. IGNORE square planar IGNORE polar bonds cancel BUT ALLOW polarities cancel IGNORE charges cancel
	(b)	 (Molecules) contain ²H OR deuterium/D ³H OR tritium/T OR O/H atoms have more neutrons (than ¹H) 	1	AO1.2	ALLOW Molecules contain ¹⁸ O Idea of isotopes is critical
		OR (different) O/H isotopes are present OR (Molecules are) $D_2O \checkmark$			BUT DO NOT ALLOW isotopes of elements different from H and O (e.g. C)
	(c)	$p(O_2) = 0.21 \times 1.00 \times 10^5$ = 21,000 / 2.1 × 10 ⁴ (Pa) ✓	1	AO2.2	

Question	Answer	Marks	AO element	Guidance
(d)	FIRST, CHECK ANSWER IF answer = 231 000, award 2 marks $n(C_3H_8)$ $n(C_3H_8) = \frac{42.0 \times 10^3}{24.0}$ OR $\frac{42.0 \times 10^6}{24000}$ OR 1750 (mol) \checkmark	2	AO2.2	ALLOW use of ideal gas equation with a sensible temperature (20–25°C) and pressure (100/101 kPa) At 20°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 293} = 1724 \text{ (mol)}$ $\rightarrow \sim 227586 \text{ (g) (dependent on roundings)}$ At 25°C and 100 kPa,
	Mass of CO ₂ mass CO ₂ = 3 × 1750 × 44 = 231 000 / 2.31 × 10 ⁵ (g) ✓ ALLOW 2 SF, e.g. 230 000		AO2.6	$n(C_{3}H_{8}) = \frac{100 \times 10^{3} \times 42.0}{8.314 \times 298} = 1695 \text{ (mol)}$ $\rightarrow \sim 223767 \text{ (g) (dependent on roundings)}$ ALLOW use of 8.31 for R ALLOW ECF from $n(C_{3}H_{8})$ Common errors from 24.0 dm ³ 231 \rightarrow 1 mark No conversion of m ³ to dm ³ 0.231 \rightarrow 1 mark Confusion of cm ³ and dm ³
(e)	Initial rate = $10^{-2} \times 2.4 \times 10^{-3} \text{ s}^{-1}$	1	AO2.2	$77\ 000 \rightarrow 1 \text{ mark}$ No 3 × for CO ₂
(f)	= 2.4 × 10 ⁻⁵ (mol dm ⁻³ s ⁻¹) ✓ FIRST, CHECK ANSWER IF answer = 9.03 × 10 ²² , award 2 marks $n(P_2O_5) = \frac{4.26}{142.0}$ OR 0.03(00) (mol) ✓ O starse = 5 = 0.0200 = 0.02 = 40 ²³	2	AO2.2	Alternative approach $n(O \text{ atoms}) = \frac{4.26}{142.0} \times 5 = 0.15 \checkmark$ $O \text{ atoms} = 0.15 \times 6.02 \times 10^{23} = 9.03 \times 10^{22} \checkmark$ ALLOW ECF from incorrect $n(P_2O_5)$ ALLOW use of 6.022×10^{23}
	O atoms = $5 \times 0.0300 \times 6.02 \times 10^{23}$ = 9.03 × 10 ²² \checkmark Minimum 3 SF required Total	9		ALLOW use of 6.022×10^{-1} Common error 1.806×10^{22} OR $1.81 \times 10^{22} \rightarrow 1$ mark No $\times 5$

	Question	Answer	Marks	AO element	Guidance
2	(a)	$CO_3^{2^-} + H_2O \rightarrow OH^- + HCO_3^-$ OR $CO_3^{2^-} + H_2O \rightarrow 2OH^- + CO_2 \checkmark$	1	AO1.2	ALLOW $CO_3^{2^-} + 2H_2O \rightarrow 2OH^- + H_2CO_3$ IGNORE state symbols ALLOW inclusion of Na ⁺ as spectator ion, e.g. $2Na^+ + CO_3^{2^-} + H_2O \rightarrow 2OH^- + 2Na^+ + CO_2$ IGNORE $Na_2CO_3 + H_2O \rightarrow 2NaOH + CO_2$ <i>lonic equation required</i> IGNORE equation with H ⁺ or H_3O ⁺ e.g. $CO_3^{2^-} + H^+ \rightarrow OH^- + CO_2$ <i>Question asks for reaction with H_2O</i>
	(b)	 Acid/H⁺/HCl reacts with OR protonates benzoate / C₆H₅COO⁻ carboxylate / salt (to form benzoic acid) ✓ 	1	AO2.3	ALLOW suitable equation, e.g. $C_6H_5COO^- + H^+ \rightarrow C_6H_5COOH$ IGNORE responses purely in terms of neutralisation of alkali, e.g. Acid/H ⁺ /HCI neutralises / reacts with/removes alkali / OH ⁻ / $CO_3^{2^-}$ / Na ₂ CO ₃
	(c)	$C_6H_5CH_2OH + 2[O] \rightarrow C_6H_5COOH + H_2O \checkmark$	1	AO2.6	ALLOW molecular, structural, displayed formulae, etc e.g. molecular: $C_7H_8O + 2[O] \rightarrow C_7H_6O_2 + H_2O$

Question	Answer	Marks	AO element	Guidance
(d)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 33.8 OR 33.9 (%) award 3 marks	3		ALLOW ECF for each step
	Theoretical moles $n(C_{6}H_{5}COOH) \text{ OR } n(C_{6}H_{5}CH_{2}OH)$ $= \frac{4.00 \times 1.04}{108.0} \text{ OR } 0.0385(mol) \checkmark$ Actual moles $n(C_{6}H_{5}COOH) = \frac{1.59}{122.0} \text{ OR } 0.013(0)(mol) \checkmark$ % yield = $\frac{0.0130}{0.0385} \times 100$ = 33.8% OR 33.9 (3 sig fig) \checkmark Answer depends on some intermediate roundings to 3SF		AO2.8 ×1 AO2.8 ×1 AO1.2	Calculator = 0.03851851852 Calculator = 0.01303278689 Alternative method using mass 1. Theoretical moles = 0.0385 mol 2. Mass = $0.0385 \times 122.0 = 4.70$ g 3. % yield = $\frac{1.59}{4.70} \times 100 = 33.8\%$ Common errors $35.2\% \rightarrow 2$ marks • From $\frac{4.00}{108} = 0.0370$ (no use of density) 36.5 OR $36.6\% \rightarrow 2$ marks • $\frac{4.00/1.04}{108} = \frac{3.846}{108} = 0.0356$ (\div density instead of \times density)

Questi	on Answer	Marks	AO element	Guidance
(e)	Dissolve in the minimum quantity of hot water/solvent ✓ Cool AND Filter AND (leave to) dry ✓ <i>All three needed</i>	2	AO3.3 ×2	 ALLOW any solvent DO NOT ALLOW use of drying agent (e.g. MgSO₄) IGNORE Initial filtering hot filtration to remove insoluble impurities
	Tota	8		

Q	Question		Answer	Marks	AO element	Guidance
3	(a)	(i)	$\begin{array}{l} 4 Pb_2 O_3 + 3 CH_4 \rightarrow 8 Pb + 3 CO_2 + 6 H_2 O \\ \hline \textbf{OR} \\ Pb_2 O_3 + CH_4 \rightarrow 2 Pb + CO + 2 H_2 O \\ \hline \textbf{OR} \\ 2 Pb_2 O_3 + 3 CH_4 \rightarrow 4 Pb + 3 C + 6 H_2 O \checkmark \end{array}$	1	AO2.6	ALLOW multiples IGNORE state symbols
		(ii)	ONE Safety issue AND precaution ✓ From: Safety issue: Compounds may be toxic/poisonous/flammable AND Precaution: Use a fume cupboard/good ventilation 	1	AO3.3	IGNORE use safety glasses, lab coat (<i>in question</i>) and tying hair back, safety screen Definite safety issue needed. Not just 'harmful' OR dangerous (Too vague). FOR OTHER SAFETY ISSUES AND PRECAUTIONS, CONTACT TEAM LEADER

Question	Answer	Marks	AO element	Guidance
	 Any 2 modifications ✓ ✓ from Heat to constant mass (Ensures all lead oxide has reacted) Spread/stir/break up lead oxide OR increase surface area OR use powder rather than lumps (Ensures all lead oxide has reacted) Pass methane/inert gas/N₂ through tube as it cools OR don't pass cold air (Prevents O₂ reacting with Pb) Use excess methane OR more methane (Ensures all lead oxide has reacted) Bubble (escaping) gas through lime water (Ensures all lead oxide has reacted) 	2	AO3.4 ×2	ALLOW response that implies heating to constant mass, e.g. Heat again until the mass does not change IGNORE 'heat for longer' <i>Needs link to constant mass</i> IGNORE 'weigh straight after heating' IGNORE idea of repeating the experiment/ taking an average/ getting concordant results / larger sample size, etc.
(iv)	Pb:OMasses(/g): 3.132 AND 0.322 ORMole ratios: $\frac{3.132}{207.2}$: $\frac{0.322}{16.0}$ ORMole ratios: 0.0151 : 0.020125 \checkmark Empirical formulaPb ₃ O ₄ (must come from masses) \checkmark	2	AO2.8 ×2	NO ECF from incorrect masses

Question	Answer	Marks	AO element	Guidance
(b)	 Type of lattice 2 marks SiO₂: Giant (covalent lattice) ✓ CO₂: Simple molecular/covalent (lattice) ✓ Explanation 2 marks 1. Forces in CO₂ Induced dipole–dipole interactions / London forces ✓ 	4	AO1.1 ×2 AO1.1 ×1	 Throughout, IGNORE 'ionic' for SiO₂ FOR SiO₂, IGNORE macromolecular DO NOT ALLOW giant metallic Mark explanation independently on type of lattice i.e. no ECF from incorrect lattice For CO₂ IGNORE covalent bonds van der Waals' forces idid LDF DO NOT ALLOW hydrogen bonds OR permanent dipole interactions
	 2. Comparison of forces with strength / melting point (Covalent) bonds in SiO₂ are stronger THAN intermolecular forces in CO₂ OR More energy to break (covalent) bonds in SiO₂ THAN intermolecular forces in CO₂ ✓ ORA 		AO2.1 ×1	For SiO ₂ , comparison needs just 'bonds' OR 'forces' For intermolecular, ALLOW 'between molecules' For comparison, ALLOW strong in SiO ₂ AND weak in CO ₂ DO NOT ALLOW responses containing intermolecular forces in SiO ₂ IGNORE 'More bonds'
	Total	10		

	Question		Answer	Marks	AO element	Guidance
4	(a)	(i)	4-chloro-3,5-dimethylphenol ✓ CARE: Look for dimethyl	1	AO1.2	 ALLOW 3,5-dimethyl-4-chlorophenol ALLOW absence of hyphens or extra hyphen or space, e.g. 4 chloro 3,5 dimethylphenol ALLOW full stops or spaces between numbers e.g. 4-chloro-3.5-dimethylphenol ALLOW name based on benzene, if unambiguous e.g.1-chloro-4-hydroxy-2,6-dimethylbenzene DO NOT ALLOW meth OR methy
		(ii)	5 ✓	1	AO2.5	
		(iii)	Functional group Phenol ✓ Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with Na ₂ CO ₃ /CO ₃ ^{2−} /carbonate ✓	2	AO1.2 AO2.3	DO NOT ALLOW alcohol OR hydroxide IGNORE hydroxyl OR hydroxy IGNORE OH (<i>name asked for</i>) ALLOW Add bromine AND white precipitate ALLOW FeCl ₃ AND violet/blue colour

Question	Answer	Marks	AO element	Guidance
(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.71×10^{-10} , award FOUR calculation marks CARE Separate mark for equation	5		
	Equation (1 mark) $C_8H_9CIO \rightleftharpoons H^+ + C_8H_8CIO^- \checkmark$ <i>Molecular formulae required (atoms in any order)</i> [C_8H_9CIO] calculation (2 marks) Molar mass $C_8H_9CIO = 156.5$ (g mol ⁻¹) \checkmark ONLY correct answer		AO1.2 ×1 AO2.8 ×4	ALLOW → for \rightleftharpoons DO NOT ALLOW C ₈ H ₈ ClOH in equation i.e. C ₈ H ₈ ClOH \rightleftharpoons H ⁺ + C ₈ H ₈ ClO ⁻ If equation is omitted, ALLOW equation mark for a correct K _a expression with molecular formula i.e. $\frac{[H^+][C_8H_8ClO^-]}{[C_8H_9ClO]}$ NO ECF from an incorrect formula in equation
	$[C_{8}H_{9}CIO] = \frac{4.8 \times 10}{156.5} \text{ OR } 0.3067(\text{mol dm}^{-3}) \checkmark$ Subsumes mark for molar mass = 156.5 $\mathcal{K}_{a} \text{ calculation (2 marks)} [H^{+}] = 10^{-5.14} = 7.244 \times 10^{-6} (\text{mol dm}^{-3}) \checkmark$ $\mathcal{K}_{a} = \frac{(7.244 \times 10^{-6})^{2}}{0.3067} = 1.71 \times 10^{-10} (\text{mol dm}^{-3}) \checkmark$			ALLOW ECF from incorrect molar mass ALLOW 0.307 up to calculator value: 0.306709265 correctly rounded ALLOW 7.24 \times 10 ⁻⁶ up to calculator value: 7.244359601 \times 10 ⁻⁶ correctly rounded ALLOW 2 SF (1.7 \times 10 ⁻¹⁰) up to calculator value, correctly rounded (but take care from acceptable intermediate rounding) COMMON ERRORS 2.36 \times 10 ⁻⁵ 3/4 calculation marks

H432/03	,
---------	---

Question	stion Answer Mark		AO element	Guidance	
(b) (i)	× ✓ OH	1	AO2.5	DO NOT ALLOW more than one * ALLOW a circle for *	
	MAXIMUM OF 4 MARKS FROM 5 MARKING POINTS Requirement for E/Z isomerism 2 marks C=C/double bond ✓ Each C (in C=C) is attached to (two) different groups/atoms ✓ Identification as E- or Z- isomer 2 marks E/Z isomerism linked to (high) priority groups ✓ Z- isomer AND groups are on same side OR the ring carbons ✓ Reason why other E/Z isomer does not exist 1 mark ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of C=C bond ✓	4	AO1.2 ×2 AO2.5 ×2	IGNORE no H attached to C=C IGNORE functional', i.e. ALLOW different functional groups ALLOW in context of groups with largest atomic number <i>ORA</i> <i>Award BOTH identification marks for:</i> <i>Z</i> - isomer AND (high) priority groups on same side Mark independently of previous part Response MUST be linked to the ring/cyclic structure IGNORE just ' <i>E</i> isomer is impossible' IGNORE C=C bond cannot rotate IGNORE Groups can't swap sides	

Question	Answer		Marks	AO element	Guidance
	First group: Reagent AND Functional group: Alkene OR cycl Examples of reagents Br2 or other halogen, HBr, H2 AND H2O(g)/steam AND H ⁺ (catalyst) Organic product for reagent with C=C in ALLOW product from H2 or H2O if H ⁺ catalomitted from reagent. Second group Reagent AND Functional group: (Tertiary) alcohometers)	Ni (catalyst), n α-terpineol ✓ alyst has been	4	AO3.2 ×4	CONTACT TEAM LEADER FOR OTHER REACTIONS ALLOW GROUPS EITHER WAY ROUND IN BOXES Functional group MUST be named DO NOT ALLOW UV with halogens ALLOW H ₂ SO ₄ /H ₃ PO ₄ /acid for H ⁺ ALLOW addition of HBr/ H ₂ O either way across C=C
	OR HBr Acid/H ⁺ (catalyst) CH ₃ COOH AND acid/H ⁺ (catalyst) CH ₃ COOCOCH ₃	(esterification) (esterification) α-terpineol ✓			ALLOW ANY HALIDE, i.e. CI^- , Br^- , I^- ALLOW $H_2SO_4/H_3PO_4/acid for H^+$ ALLOW HBr for H^+ and Br^- ALLOW name or formula of any carboxylic acid or acyl chloride for esterification ALLOW Na \rightarrow product with $-ONa \ OR -O^-$ DO NOT ALLOW $Cr_2O_7^{2-}/H^+$ (tertiary alcohol)
		Total	18		

0	Questi	ion	Answer	Marks	AO element	Guidance
5	(a)	(i)*	Please refer to the marking instructions on page 4 of this mark	6	AO3.1	Indicative scientific points may include:
			scheme for guidance on how to mark this question.		×4	1. Processing experimental data
						Energy change from <i>mc</i> ∆ <i>T</i>
			Level 3 (5–6 marks)		AO3.2	Energy in J OR kJ
			Calculates CORRECT enthalpy change with correct – signs		×2	Using 50.70 g, 50.0 g
			for			= 50.70 × 4.18 × 13.5 = 2861 (J) OR 2.861 (kJ)
			$\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2			3SF or more (2.861001 unrounded)
						OR 50.0 × 4.18 × 13.5 = 2821.5 (J) OR 2.8215 (kJ)
			$\Delta_r H$, for reaction 5.1 .			Amount in mol of CuSO₄
			There is a well-developed line of reasoning which is clear and logically structured.			• $n(\text{CuSO}_4) = \frac{7.98}{159.6} = 0.0500 \text{ (mol)}$
			The information presented is relevant and substantiated.			
						2. \pm value of Δ_{sol} <i>H</i> (CuSO ₄ (s)) for reaction 5.2
			Level 2 (3–4 marks)			From $m = 50.70 \text{ g} = \pm \frac{2.861}{0.0500} = \pm 57.22 \text{ (kJ mol}^{-1)}$
			Calculates a value of $\Delta_{sol}H$ (CuSO ₄ (s)) for reaction 5.2 from			0.0000
			the:			(–57.22002 unrounded)
			Energy change AND			From $m = 50.0 \text{ g} = \pm \frac{2.8215}{0.0500} = \pm 56.43 \text{ (kJ mol}^{-1}\text{)}$
			Amount in mol of CuSO ₄ .			
						3. CORRECT enthalpy changes for reactions
			There is a line of reasoning presented with some structure.			5.2 and 5.1 with signs (using 50.70 g ONLY)
			The information presented is relevant and supported by some			Reaction 5.2 = -57.22 (kJ mol ⁻¹)
			evidence.			3SF or more with correct – sign
			Level 1 (1–2 marks)			Reaction 5.1
			Processes experimental data to obtain the:			$\Delta_{\rm r}H = \Delta_{\rm sol}H({\rm CuSO}_4({\rm s})) - \Delta_{\rm sol}H({\rm CuSO}_4\bullet{\rm SH}_2{\rm O}({\rm s}))$
			Energy change from $mc\Delta T$			= -57.22 - 8.43 = -65.65 (kJ mol ⁻¹)
						3SF or more with correct – sign
			Amount in mol of CuSO ₄ .			NOTE: A clear and logically structured response
						would include an energy cycle
			There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.			ALLOW omission of trailing zeroes ALLOW minor slips

Question		Answer	Marks	ks AO element Guidance	Guidance
(a) ((ii)	0 marks – No response or no response worthy of credit. Temperature change = $0.2 \times \frac{100}{20} = 1(.0)^{\circ}C \checkmark$	1	AO2.8	IGNORE direction of temperature change Working NOT required
(b)		Temperature change = $0.2 \times \frac{100}{20} = 1(.0)^{\circ}C \checkmark$ FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks Part 1: Calc of $\Delta_r S$ Use of 298 K (seen anywhere) 1 mark \checkmark • e.g16.1 = -55.8 - 298 × ΔS CORRECT use of Gibbs' equation 1 mark • using candidate's temperature (e.g. 298) • with -16.1 AND -55.8 • to calculate ΔS in kJ OR J \checkmark Part 2: Calc of S(Na ₂ S ₂ O ₃) 1 mark CORRECT use of standard S data in question \checkmark Part 2: Calc of S(Na ₂ S ₂ O ₃) + (5 × 69.9)] • 372.4 - [S(Na ₂ S ₂ O ₃) + (5 × 69.9)] • OR 372.4 - (5 × 69.9) • OR 372.4 - 349.5 • OR 22.9 IGNORE sign, i.e. ALLOW -22.9, etc CORRECT calculation of S(Na ₂ S ₂ O ₃) using candidate's calculate ΔS in Part 1 to 3 SF 1 mark \checkmark		A02.4 ×4	Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$ = -0.133(kJ K ⁻¹ mol ⁻¹) OR -133 (J K ⁻¹ mol ⁻¹) -133.221 (kJ K ⁻¹ mol ⁻¹) -133.221 (J K ⁻¹ mol ⁻¹) ALLOW ECF from incorrect temperature. Using -133: $S(Na_2S_2O_3) = 372.4 - 349.5 - (-133)$ = 22.9 + 133 = (+)156 (J K ⁻¹ mol ⁻¹) 3 SF required
					ALLOW ECF from incorrect $\Delta_r S$ (Part 1)

H432/03

Question	Answer	Marks	AO element	Guidance
(c) (i)	109.5(°) AND tetrahedral ✓	1	AO1.2	ALLOW 109–110(°)
	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -S & -S & -S & -S & -O \\ 0 & 0 & 0 & 0 \\ -S & -S & -O & -O & -S & -S \\ 0 & 0 & 0 & 0 \\ -S & -S & -O & -S & -S \\ 0 & 0 & 0 & \checkmark$ $\begin{bmatrix} 0 & 0 & 0 \\ -O & -S & -S & -O & -S & -S \\ 0 & 0 & 0 & \checkmark$ $\begin{bmatrix} 0 & 0 & 0 \\ -O & -S & -S & -S & -S \\ 0 & 0 & 0 & \checkmark$ $\begin{bmatrix} 0 & 0 & 0 & -S & -S & -S \\ 0 & 0 & 0 & \checkmark$ $\begin{bmatrix} 0 & 0 & 0 & -S & -S & -S \\ 0 & 0 & 0 & \checkmark$ $\begin{bmatrix} 0 & 0 & 0 & -S & -S & -S \\ 0 & 0 & 0 & \checkmark$ $\begin{bmatrix} 0 & 0 & 0 & -S & -S & -S & -S \\ 0 & 0 & 0 & \checkmark \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & -S & -S & -S & -S \\ 0 & 0 & 0 & \checkmark$ $\begin{bmatrix} 0 & 0 & 0 & -S & -S & -S & -S & -S \\ 0 & 0 & 0 & \checkmark \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & -S & -S & -S & -S & -S & -S$	1	AO3.1	IGNORE charges ALLOW cyclic structures. Three 6-ring structures possible, e.g. $0 \rightarrow 0^{2-}$ $0 \rightarrow 0^{2-}$ $0 \rightarrow 0^{2-}$ $0 \rightarrow 0^{2-}$ $1 \rightarrow 1^{2-}$ $0 \rightarrow 0^{2-}$ $0 \rightarrow 0^{2-}$ $0 \rightarrow 0^{2-}$ $1 \rightarrow 1^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 1^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 1^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 1^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow 0^{2-}$ $1 \rightarrow$
	Total	13		

(Questi	ion	Answer	Marks	AO element	Guidance
6	(a)	(i)	A: $Fe(OH)_3(s) \checkmark$ B: $Ag_2S(s) \checkmark$	2	AO3.1 ×2	ALLOW Fe(OH) ₃ (H ₂ O) ₃ IGNORE state symbols
		(ii)	Student is incorrect AND No oxidation numbers change OR example, e,g, Fe stays as +2 ✓	1	AO3.2	ALLOW no electron transfer
		(iii)	$2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow 2[Fe(H_2O)_6]^{3+} + 2Cl^{-} \checkmark$	1	AO3.1	ALLOW multiples e.g. $[Fe(H_2O)_6]^{2+} + \frac{1}{2}Cl_2 \rightarrow [Fe(H_2O)_6]^{3+} + Cl^-$ ALLOW $2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow 2[Fe(H_2O)_5OH]^{2+} + 2HCl$ OR $2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow 2[Fe(H_2O)_5Cl]^{2+} + 2H_2O$ NOTE: equation MUST be balanced by charge and oxidation number IGNORE state symbols
		(iv)	$5H_2S + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5S + 8H_2O \checkmark \checkmark$ 1st mark ALL Correct species (SIX) OR Equation containing Mn and S species correctly balanced i.e. $5H_2S + 2MnO_4^- \dots \rightarrow 2Mn^{2+} + 5S \dots$ 2nd mark Complete correct balanced equation	2	AO3.1 ×2	ALLOW multiples, e.g. $2\frac{1}{2} H_2S + MnO_4^- + 3H^+ \rightarrow Mn^{2+} + 2\frac{1}{2} S + 4H_2O$ ALLOW equation with S^{2} , e.g. $5S^{2-} + 2MnO_4^- + 16H^+ \rightarrow 2Mn^{2+} + 5S + 8H_2O$ IGNORE extra electrons for 1st mark

Question	Answer	Marks	AO element	Guidance
(b)*	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of C, D, E, F, G AND 9H₂O There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of C, D, E, F, G AND 9H₂O. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Reaches a simple conclusion to determine the correct formulae of some of C, D, E, F, G AND 9H₂O. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6	AO1.2 ×2 AO3.1 ×2 AO3.2 ×2	Indicative scientific points may include: Formula of C, D, E, F and G • C: Fe(NO ₃) ₃ •9H ₂ O OR FeN ₃ O ₉ •9H ₂ O • D: FeN ₃ O ₉ OR Fe(NO ₃) ₃ • E: Fe ₂ O ₃ • F: NO ₂ • G: O ₂ • 9H ₂ O <i>Examples of evidence</i> $n(H_2O) = \frac{0.486}{18.0} = 0.027 \text{ (mol)}$ $0.027 : 0.003 = 1 : 9 \rightarrow 9H_2O$ $n(F) = \frac{270 - 54}{24000} = \frac{216}{24000} = 0.009(00) \text{ (mol)}$ $M(E) = 55.8 \times 2 + 16.0 \times 3 = 159.6$ $M(F) = \frac{0.414}{0.009(00)} = 46 \text{ (g mol}^{-1})$ G: oxygen linked to relighting glowing split <i>NOTE: Equations could include evidence</i> e.g Fe(NO ₃) ₃ •9H ₂ O \rightarrow Fe(NO ₃) ₃ + 9H ₂ O 2Fe(NO ₃) ₃ \rightarrow Fe ₂ O ₃ + 6NO ₂ + 1½O ₂
	Total	12		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019